4/6/2004
Dr. Lunsford

MA385 Intro. to Probability
Quiz 5

Name:
(20 Points Total)

You may use the front flap and appendices of your textbook for this quiz. Neatly show all of your work.
I. Suppose the continuous random variable X has p.d.f. $f(x)$ and c.d.f. $F(x)$ both given below. You are also given a graph of the p.d.f. below. Please answer the following questions. (12 points total)

$$
F(x)=\left\{\begin{array}{ll}
0, & x \leq-2 \\
\frac{1}{2} x+1, & -2 \leq x \leq-1 \\
1 / 2, & -1 \leq x \leq 1 \\
\frac{1}{2} x^{2}-x+1, & 1 \leq x \leq 2 \\
1, & x \geq 2
\end{array} \quad f(x)= \begin{cases}1 / 2, & -2 \leq x \leq-1 \\
x-1, & 1 \leq x \leq 2 \\
0, & \text { elsewhere }\end{cases}\right.
$$

(a) Represent the probability $P\left(-\frac{3}{2} \leq X \leq \frac{3}{2}\right)$ on the graph of the p.d.f. to your right. (2 points)
(b) Find the probability in part (a) using two of the following three methods: 1. Graphically (i.e. using basic geometry); OR 2. Using the p.d.f. OR 3. Using the c.d.f. Clearly indicate which two methods you use to find the probability. (10 points)
II. Suppose that Y is normally distributed with $\mu=20$ and $\sigma^{2}=16$. Please answer the following: (4 points each, 8 total)
(a) Find $P(17 \leq Y \leq 25)$ and graph this probability on the p.d.f. of Y shown to the right.

(b) Find the value of c so that $P(Y>c)=0.0212$. Show the probability and the value of c on the graph of p.d.f. of Y shown to the right.

