I. Use the graph of the function f below to find the indicated function values and limits. If the limit does not exist as a number indicate if it is ∞ , $-\infty$, or DNE. (1 point each unless indicated, 8 points total)

$$f(2) = 1$$

$$\lim_{x \to \infty} f(x) = DNE$$

$$\lim_{x \to 2^{-}} f(x) = -2$$

$$\lim_{x \to 1^+} f(x) = \underline{-}$$

$$\lim_{x \to 0} f(x) = -1$$

$$f(2) = \underbrace{1}_{x \to 2} \lim_{x \to 2} f(x) = \underbrace{DNE}_{x \to 2^{-}} \lim_{x \to 2^{-}} f(x) = \underbrace{-2}_{x \to 1^{+}}$$

$$\lim_{x \to 1^{+}} f(x) = \underbrace{-1}_{x \to -2} \lim_{x \to -2} f(x) = \underbrace{-1}_{x \to -2}$$

Which is greater? The instantaneous rate of change of f at x = -3 or at

x = 3? Why? (2 points)

II. A bird takes off from Cape Hatteras Lighthouse and 20 seconds later it dives into the ocean. We can model the vertical height (in feet) of the bird by the function $h(t) = 200 + 10t - t^2$ where t is in seconds. A graph of

this function is given below. Please answer the following questions being sure h(15)=200+10(15)-152=125, h10)=200 work. (12 points total)

$$\Delta h = h(15) - h/0 = \frac{125 - 200}{15} = \frac{-75}{15} = \frac{-5 + 15}{2505}$$

(c) Find an expression that gives the bird's average rate of change in height from time t = 15 seconds to time t seconds. You should simplify this expression if possible. (5 points)

$$\frac{\Delta h}{\Delta t} = \frac{h(t) - h(15)}{t - 15} = \frac{200 + 10t - t^2 - 125}{t - 15}$$

(d) Complete the chart below and use it to estimate the bird's instantaneous rate of change in height at t = 10 seconds. Please round all table entries to four decimal places. (3 points total)

Time t	14.99	14.999	15.001	15.01
Average Velocity from $t = 15$ to time t seconds.	-19,9900	-19,9990	-20.0010	- 20.0100

The bird's instantaneous rate of change in height at t = 15 seconds is $\frac{-20 + 2}{5}$

	у	3 - 2 - 1 - /			
-3 1/2	-1	_1 /	1	2 x	3
1	_	-2-		p	
		-3-			
e to neatly show al	lof	your	V		

Height of Bird in Flight

10

15

20

150

100

50