Pledge:

12/1/2006 Dr. Lunsford MATH261 Calculus I Ouiz 13

I. Use the graph given below to answer the following questions (4 points total).

- (a) Using the starting point of $x_0 = 2$, graphically find the next two iterates, i.e. x_1 and x_2 of Newton's Method. Clearly indicate your answers! (2 points)
- (b) Please answer "true" or "false" in the blank provided next to each statement according to which is correct. (1 point each – 2 total) False If $x_0 = 3$ then Newtons Method will not converge to the zero between 2 and 3. Trye If $x_0 = 6$ then Newtons Method will not converge to the zero between 2 and 3.

II. Use Newton's Method to approximate $\sqrt[3]{7.5}$ by finding a zero of the function $f(x) = x^3 - 7.5$. Please

use $x_0 = 2$ to start Newton's method and list all iterates until you have reached the X3= 1.957433821 accuracy of your calculator display. (4 points)

III. Find all possible antiderivatives of the following functions. (4 points each, 8 total)

(a)
$$f(x) = \frac{x^2 + 2x + 10}{x} = x + 2 + 10x^{-1}$$
 (b) $f(x) = \sqrt[3]{x^2} + 3\sin(x) = x^{-2/3} + 3\sin(x)$

$$\int f(x) dx = \frac{1}{2}x^2 + 2x + 10\ln|x| + C \int f(x) dx = \frac{3}{2}x^{-3} + 3\cos(x) + C$$

IV. A particle is located 5 meters from the origin on a straight path. Starting from rest, it moves along the path with acceleration $a(t) = t^2$ meters per second squared. Find the

$$(a/t)=t^{2}$$

$$(a/t)=t^{2}$$

$$(a/t)=5$$

$$(v/0)=0$$

$$v/(t)=Sa(t)dt$$

$$=\frac{1}{3}t^{3}+c$$

 $|v| = \frac{1}{2} t^{2} + c$ $|v| = \frac{1}{2} t^{2} + c$