10/3/2000
Dr. Lunsford

MA430 Theory of Prob/Stats I Quiz 3

Name:
(20 Points Total)
I. An "ace-six flats" die is rolled. Let $P(i)$ be the probability that the $i^{\text {th }}$ face appears and suppose that $P(1)=P(6)=\frac{1}{4}$ and $P(2)=P(3)=P(4)=P(5)=\frac{1}{8}$.
(a) What is the probability that the roll (i.e. the face that appears) is less than five? (4 points)

Let A be the event that the roll is less than five. Then $A=\{1,2,3,4\}$ and thus
$P(A)=P(1)+P(2)+P(3)+P(4)=\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{5}{8}$
(b) What is the probability that the roll is a one given that the roll is less than five? (4 points)

Let B be the event the roll is a one. Then $P(B)=\frac{1}{4}$ and the probability that the roll is a one given the roll is less than five is $P(B \mid A)=\frac{P(B \bigcap A)}{P(A)}=\frac{P(B)}{P(A)}=\frac{1 / 4}{5 / 8}=\frac{2}{5}$. Note that since $B \bigcap A=A$ we have $P(B \bigcap A)=P(A)$.
II. The time it takes for a student to comp lete their degree at ASU has the continuous probability (density) function $f(x)=\frac{3}{80}\left(6 x-x^{2}\right), 0<x<4$ where x is in years. What is the probability that a student will complete their degree within three years? Shade the area that represents this probability on the graph below. (NOTE: Should be 4 points, not 6 as on your original quiz)

Let A be the event a student completes their degree within three years. Then $P(A)=\int_{0}^{3} \frac{3}{80}\left(6 x-x^{2}\right)=\frac{54}{80}=.675$. The area shaded should be the area bounded by the graph of the probability function, the x-axis and the lines $x=0$ and $x=3$, i.e. the area under the curve from 0 to 3 . Note: Graph not in this html document.
III. A track coach has 10 sprinters and 6 long distance runners from which to form a team of three sprinters and two long distance runners.
(a) How many teams can she form? (4 points) Note: We do not want to count a different permutation of players as a different team, thus order does not matter in our selection.
$\binom{10}{3}\binom{6}{2}=1800$
(b) Suppose she wants to designate one of the sprinters as the team captain. How many teams can she now form? (4 point)

$$
\binom{10}{1}\binom{9}{2}\binom{6}{2}=10\binom{9}{2}\binom{6}{2}=5400
$$

