Descriptive Statistics Overview

When given a set of data values, to summarize the data we will construct graphical and numerical summaries. In discussing the distribution of the values, comment on **shape**, **center**, **spread**, and any **outliers** or deviations from the general pattern.

• Graphical Summaries for Quantitative data

- \circ *Stem and leaf plots*
 - Shows actual data values
 - May need to split stems or truncate values
- Histograms
 - If bins are equal width then height of bar equals number of observations
 - Include left hand endpoint
 - Frequency vs. relative frequency

• Graphical Summaries for Categorical data

- Bar graphs
 - Usually separate the bars
 - Height is count or percentage in the category

• Numerical Summaries for Quantitative data

- Center
 - Mean (\bar{x}, μ) = numerical average of all the values
 - "Balance point" of the distribution
 - Pulled towards the tail of a skewed distribution
 - Median $(\hat{x}, \hat{\mu})$ = middle value
 - "Typical" value
 - Resistant to outliers
 - *Trimmed mean*, e.g. 10% trimmed mean is the average of middle 80%
- o Spread
 - $Range = \max \min$
 - *Standard deviation* (*s*, σ)
 - Measures "average deviation" from the mean (how far do the values tend to fall from the mean)
 - Fourth spread (f_s)
 - Divide the data set into quarters
 - Resistant to outliers
- *Five number summary* = min, lower fourth, median, upper fourth, max
 - Boxplots (most useful for comparing data sets)
- Checking for outliers
 - Any values below Q_1 -1.5 $(Q_3$ - $Q_1)$ or above Q_3 +1.5 $(Q_3$ - $Q_1)$
- Numerical Summaries for Categorical data
 - $x/n = \text{count/number of observations} = \hat{p}$ (*p* for population)
 - Proportion is usually more informative than count

Brief Review of Set Operations and Properties

A <u>set</u> is a collection of elements. For our purposes, these elements will be outcomes of a (random) experiment, i.e. an event. Sets are typically denoted with capital letters.

OPERATION	<u>NOTATION</u>	<u>MEANING</u>	
Union of two events	$A \cup B$	A or B	
Intersection of two events	$A \cap B$ [or AB]	A and B	
Complement of an event	A' [or A^c or \overline{A}]	not A	
Finite union of events	$A_1 \cup A_2 \cup \ldots \cup A_n$	at least one of the A _i 's	
Finite intersection of events	$A_1 \cap A_2 \cap \ldots \cap A_n$	all of the A _i 's	
DEFINITION	<u>NOTATION</u>	<u>MEANING</u>	
A is a subset of B	$A \subset B$	A is contained in B	
A, B mutually exclusive	$A \cap B = \phi$	no shared outcomes	
PROPERTY	STATEMENT		
Commutative	$\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}$		
	$A \cap B = B \cap A$		
Associative	$(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C} = \mathbf{A} \cup (\mathbf{B} \cup \mathbf{C})$		
	$(A \cap B) \cap C = A \cap (B \cap C)$		
Distributive	$A \cup (B \cap C) = (A \cup B) \cap (B \cup C)$		
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
DeMorgan's Laws	$(A \cup B)' = A' \cap B'$		
	$(A \cap B)' = A' \cup B'$		

An event is a set, while a probability is a number.

One calculates probabilities of events (and therefore of sets), but probabilities are numbers. The following <u>meaningless</u> statements are examples of nonsensical confusions of sets and numbers:

$P(A) \cap P(B)$	(P(A))	P(1-A)	P(A+B)
			· · · · · · · · · · · · · · · · · · ·

Examples of <u>meaningful</u> statements about events and probabilities include: $P(A \cap B)$ P(A') 1- P(A) P(A)+P(B)

It's very useful for later understanding if you force yourself to explain each step in detail and always use the correct notation.

Some other handy translations:

 $A = (A \cap B) \cup (A \cap B')$, which says that A is composed of its part that intersects together with its part that does not intersect B

 $A \cup B = (A \cap B) \cup (A \cap B') \cup (A' \cap B)$, which says that A union B is composed of three mutually exclusive pieces

"exactly one of the two events A and B" = $(A \cap B') \cup (A' \cap B)$