Descriptive Statistics Overview

When given a set of data values, to summarize the data we will construct graphical and numerical summaries. In discussing the distribution of the values, comment on shape, center, spread, and any outliers or deviations from the general pattern.

- Graphical Summaries for Quantitative data
- Stem and leaf plots
- Shows actual data values
- May need to split stems or truncate values
- Histograms
- If bins are equal width then height of bar equals number of observations
- Include left hand endpoint
- Frequency vs. relative frequency
- Graphical Summaries for Categorical data
- Bar graphs
- Usually separate the bars
- Height is count or percentage in the category
- Numerical Summaries for Quantitative data
- Center
- Mean $(\bar{x}, \mu)=$ numerical average of all the values
- "Balance point" of the distribution
- Pulled towards the tail of a skewed distribution
- Median $(\widetilde{\mathrm{x}}, \widetilde{\mu})=$ middle value
- "Typical" value
- Resistant to outliers
- Trimmed mean, e.g. 10% trimmed mean is the average of middle 80%
- Spread
- Range $=\max -\min$
- Standard deviation (s, σ)
- Measures "average deviation" from the mean (how far do the values tend to fall from the mean)
- Fourth spread $\left(f_{s}\right)$
- Divide the data set into quarters
- Resistant to outliers
- Five number summary $=\min$, lower fourth, median, upper fourth, max
- Boxplots (most useful for comparing data sets)
- Checking for outliers
- Any values below $\mathrm{Q}_{1}-1.5\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$ or above $\mathrm{Q}_{3}+1.5\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$

- Numerical Summaries for Categorical data

- $x / n=$ count/number of observations $=\hat{p}$ (p for population)
- Proportion is usually more informative than count

Brief Review of Set Operations and Properties

A set is a collection of elements. For our purposes, these elements will be outcomes of a (random) experiment, i.e. an event. Sets are typically denoted with capital letters.

OPERATION	NOTATION	MEANING
Union of two events	$\mathrm{A} \cup \mathrm{B}$	A or B
Intersection of two events	$\mathrm{A} \cap \mathrm{B}$ [or AB$]$	A and B
Complement of an event	$\mathrm{A}^{\prime}\left[\right.$ or A^{c} or $\overline{\mathrm{A}}$]	$n \operatorname{not}$ A
Finite union of events	$\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{n}$	at least one of the A_{i} 's
Finite intersection of events	$\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \ldots \cap \mathrm{~A}_{n}$	all of the A_{i} 's
DEFINITION	NOTATION	MEANING
A is a subset of B	$\mathrm{A} \subset \mathrm{B}$	A is contained in B
A, B mutually exclusive	$\mathrm{A} \cap \mathrm{B}=\phi$	no shared outcomes
PROPERTY	STATEMENT	
Commutative	$\overline{A \cup B=B \cup A}$	
Associative	$(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$	
	$(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$	
Distributive	$A \cup(B \cap C)=(A \cup B) \cap(B \cup C)$	
	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
DeMorgan's Laws	$(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$	
	$(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$	

An event is a set, while a probability is a number.

One calculates probabilities of events (and therefore of sets), but probabilities are numbers. The following meaningless statements are examples of nonsensical confusions of sets and numbers:

$$
\mathrm{P}(\mathrm{~A}) \cap \mathrm{P}(\mathrm{~B}) \quad(\mathrm{P}(\mathrm{~A}))^{\prime} \quad \mathrm{P}(1-\mathrm{A}) \quad \mathrm{P}(\mathrm{~A}+\mathrm{B})
$$

Examples of meaningful statements about events and probabilities include:

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \quad \mathrm{P}\left(\mathrm{~A}^{\prime}\right) \quad 1-\mathrm{P}(\mathrm{~A}) \quad \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

It's very useful for later understanding if you force yourself to explain each step in detail and always use the correct notation.

Some other handy translations:

$A=(A \cap B) \cup\left(A \cap B^{\prime}\right)$, which says that A is composed of its part that intersects together with its part that does not intersect B
$\mathrm{A} \cup \mathrm{B}=(\mathrm{A} \cap \mathrm{B}) \cup\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \cup\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)$, which says that A union B is composed of three mutually exclusive pieces
"exactly one of the two events A and $\mathrm{B} "=\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \cup\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)$

