NAME(S)_

Virtual Lab Activity: The Normal Approximation to the Binomial

[The Virtual Laboratory for Probability and Statistics was developed by Dr. Kyle Siegrist at UAH.]

Go to <u>www.math.uah.edu/stat/</u>

Select

- 11. Bernoulli Trials
- 2. The Binomial Distribution

Scroll down to the lesson on The Normal Approximation, and turn in:

37. Set the random variable to M = the proportion of successes. Set p = .1. Start with n = 1 and progress to n = 100. Repeat for the other values of p (.3, .5, .7, .9) and observe the changes in the shape of the distribution. Specifically, what change did you observe in the distribution standard deviation of each distribution as n increased?

For n = 100, and 1000 runs

	Dist. mean	Data mean	Dist SD	Data SD
P=.1				
P=.3				
P=.5				
P=.7				
P=.9				

- 40. Set the random variable to X. With n = 15, p=.15, and 1000 runs, record
 - a) The actual probability that $P(5 \le X \le 10)$. Use the Distribution values.
 - b) The relative frequency probability that $P(5 \le X \le 10)$. Use the Data values of the simulation.
 - c) The Normal approximation to $P(5 \le X \le 10)$. Calculate by hand letting μ =the mean of the binomial distribution and σ = the standard deviation of the binomial distribution.