Virtual Lab Activity: From the Binomial to the Poisson

[The Virtual Laboratory for Probability and Statistics was developed by Dr. Kyle Siegrist at UAH.]

Go to <u>www.math.uah.edu/stat/</u>

Select

- 14. The Poisson Process
- 6. Analogy with Bernoulli Trials

Read the lesson, and turn in:

- 1. Distribution Mean = _____, SD = _____ Data Mean = _____, SD = _____
- 2. Note: In the simulation, $\lambda = rt$, where r is the rate of occurrences over t units of time. For example, there could be r = 5 customers every t = 2 hours. This is equivalent to saying $\lambda = 10$ customers on average per period where a period is 2 hours. The text uses λt instead of rt.

Distribution Mean = _____, SD = _____ Data

Mean = _____, SD = _____

- 8. With n = 30, p = .1, and 1000 runs, record
 - a) The actual probability that $P(X \le 4)$. Use the <u>Distribution</u> values.
 - b) The relative frequency probability. Use the <u>Data</u> values of the simulation.
 - c) The Poisson approximation. Calculate by hand letting λ = the mean of the binomial distribution.