Probability Review and Counting Fundamentals

Ginger Holmes Rowell, Middle TN State University
Tracy Goodson-Espy and M. Leigh Lunsford, University of AL, Huntsville
Overview

- Probability Review

- Fundamentals of Counting
 - Permutations: *ordered arrangements*
 - Combinations: *unordered arrangements*

- Selected Activities
Probability Review

- Definitions
- Classical Probability
- Relative Frequency Probability
- Probability Fundamentals and Probability Rules
What is Probability?

- Probability

 the study of chance associated with the occurrence of events

- Types of Probability

 - Classical (Theoretical)
 - Relative Frequency (Experimental)
Rolling dice and tossing a coin are activities associated with a classical approach to probability. In these cases, you can list all the possible outcomes of an experiment and determine the actual probabilities of each outcome.
Listing All Possible Outcomes of a Probabilistic Experiment

- There are various ways to list all possible outcomes of an experiment
 - Enumeration
 - Tree diagrams
 - Additional methods – counting fundamentals
Three Children Example

- A couple wants to have exactly 3 children. Assume that each child is either a boy or a girl and that each is a single birth.
- List all possible orderings for the three children.
<table>
<thead>
<tr>
<th>1<sup>st</sup> Child</th>
<th>2<sup>nd</sup> Child</th>
<th>3<sup>rd</sup> Child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enumeration

<table>
<thead>
<tr>
<th>1<sup>st</sup> Child</th>
<th>2<sup>nd</sup> Child</th>
<th>3<sup>rd</sup> Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>
Tree Diagrams

1st Child 2nd Child 3rd Child

B → B → B

B → G → G

G → B → G

G → G → G
Definitions

- **Sample Space** - the list of all possible outcomes from a probabilistic experiment.
 - 3-Children Example:
 \[S = \{\text{BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG}\} \]
 - Each individual item in the list is called a **Simple Event** or **Single Event**.
Probability Notation

\[P(\text{event}) = \text{Probability of the event occurring} \]

Example: \(P(\text{Boy}) = P(B) = \frac{1}{2} \)
Probability of Single Events with Equally Likely Outcomes

- If each outcome in the sample space is **equally likely**, then the probability of any one outcome is 1 divided by the total number of outcomes.

For equally likely outcomes,

\[P(\text{simple event}) = \frac{1}{\text{total number of outcomes}} \]
A couple wants 3 children. Assume the chance of a boy or girl is \textit{equally likely} at each birth.

What is the \textit{probability} that they will have \textbf{exactly} 3 girls?

What is the \textit{probability} of having \textbf{exactly} 3 boys?
Probability of Combinations of Single Events

- An event can be a combination of *Single Events*.

- The probability of such an event is the sum of the individual probabilities.
Three Children Example
Continued

$P(\text{exactly 2 girls}) = _

P(\text{exactly 2 boys}) = _

P(\text{at least 2 boys}) = _

P(\text{at most 2 boys}) = _

P(\text{at least 1 girl}) = _

P(\text{at most 1 girl}) = _

\begin{itemize}
 \item Sample space = _
\end{itemize}
Types of Probability

- Classical (Theoretical)
- Relative Frequency (Experimental, Empirical)
Relative Frequency Probability

- Uses actual experience to determine the likelihood of an outcome.
- What is the chance of making a B or better?

<table>
<thead>
<tr>
<th>Grade</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>Below C</td>
<td>10</td>
</tr>
</tbody>
</table>
Relative Frequency Probability is Great Fun for Teaching

- Rolling Dice
- Flipping Coins
- Drawing from Bags without Looking (i.e. Sampling)
- Sampling with M&M's
 (http://mms.com/cai/mms/faq.html#what_percent)
Empirical Probability

- Given a frequency distribution, the probability of an event, \(E \), being in a given group is

\[
P(E) = \frac{\text{frequency of the group}}{\text{total frequencies in the distribution}} = \frac{x}{n}
\]
Two-way Tables and Probability

<table>
<thead>
<tr>
<th></th>
<th>Made A</th>
<th>Made < A</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>60</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Find $P(M)$
- $P(A)$
- $P(A\text{ and } M)$
Question: How Can You Win at Wheel of Fortune?

Answer: Use Relative Frequency Probability (see handout)

What is **wrong** with the statements?

- The probability of rain today is -10%.
- The probability of rain today is 120%.
- The probability of rain or no rain today is 90%.

$$P(event) \geq 0$$
$$P(event) \leq 1$$
$$P(sample \ space) = 1$$
Let A and B be events

Complement Rule:
\[P(A) + P(\text{not } A) = 1 \]
Set Notation

- **Union:** \(A \) or \(B \) (inclusive “or”)

- **Intersection:** \(A \) and \(B \)
Probability Rules

Union \[P(A \cup B) = P(A \text{ or } B) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
Teaching Idea

- Venn Diagrams
- Kyle Siegrist’s Venn Diagram Applet

http://www.math.uah.edu/stat/applets/index.xml
Two-way Tables and Probability

<table>
<thead>
<tr>
<th></th>
<th>Made A</th>
<th>Made < A</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>30</td>
<td>45</td>
<td>75</td>
</tr>
<tr>
<td>Female</td>
<td>60</td>
<td>65</td>
<td>125</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>110</td>
<td>200</td>
</tr>
</tbody>
</table>

- Find $P(M)$
- $P(A)$
- $P(A \text{ and } M)$
- $P(A \text{ if } M)$
Conditional Probability

\[P(A|B) = \text{the conditional probability of event } A \text{ happening given that event } B \text{ has happened} \]

“probability of A given B”

\[
P(A \mid B) = \frac{P(A \cap B)}{P(B)}
\]
Independence

- Events A and B are “Independent” if and only if

\[P(A | B) = P(A) \]

- From the two-way table, is making an “A” independent from being male?
<table>
<thead>
<tr>
<th>Teaching Idea: Discovery Worksheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>❖ Basic Probability Rules (see handout)</td>
</tr>
<tr>
<td>❖ Basic Probability Rules (long version)</td>
</tr>
<tr>
<td>❖ Conditional Probability</td>
</tr>
</tbody>
</table>
Overview

- Probability Review

- Fundamentals of Counting
 - Permutations: *ordered arrangements*
 - Combinations: *unordered arrangements*

- Selected Activities
Counting Techniques

- Fundamentals of Counting
- Permutations: *ordered arrangements*
- Combinations: *unordered arrangements*
Fundamentals of Counting

Q: Jill has 9 shirts and 4 pairs of pants. How many different outfits does she have?

A:
Fundamentals of Counting

Multiplication Principle:

If there are \(a \) ways of choosing one thing, and \(b \) ways of choosing a second thing after the first is chosen, then the total number of choice patterns is:

\[a \times b \]
Q: 3 freshman, 4 sophomores, 5 juniors, and 2 seniors are running for SGA representative. One individual will be selected from each class. How many different representative orderings are possible?

A:
Generalized Multiplication Principle:

If there are \(a \) ways of choosing one thing, \(b \) ways of choosing a second thing after the first is chosen, and \(c \) ways of choosing a third thing after the first two have been chosen...and \(z \) ways of choosing the last item after the earlier choices, then the total number of choice patterns is \(a \times b \times c \times \ldots \times z \).
Q: When I lived in Madison Co., AL, the license plates had 2 fixed numbers, 2 variable letters and 3 variable numbers. How many different license plates were possible?

A:
Fundamentals of Counting

Q: How many more license plate numbers will Madison County gain by changing to 3 letters and 2 numbers?

A:
Q: Given 6 people and 6 chairs in a line, how many seating arrangements (orderings) are possible?

A:
Q: Given 6 people and 4 chairs in a line, how many different orderings are possible?

A:
Permutations: Ordered Arrangements

- **Permutation of** n objects taken r at a time:
 \[r\text{-permutation, } P(n,r), \ nPr \]

- **Q:** Given 6 people and 5 chairs in a line, how many different orderings are possible?

- **A:**
Permutations: Ordered Arrangements

\[nP_r = n(n-1) \cdots (n-(r-1)) \]
\[= n(n-1) \cdots (n-r+1) \]
\[= n(n-1) \cdots (n-r+1) \frac{(n-r)!}{(n-r)!} \]
\[= n(n-1) \cdots (n-r+1)(n-r) \cdots (3)(2)(1) \]
\[= \frac{n!}{(n-r)!} \]

\[nP_r = \frac{n!}{(n-r)!} \]
Permutations: Ordered Arrangements

Q: How many different batting orders are possible for a baseball team consisting of 9 players?

A:
Q: How many different batting orders are possible for the leading four batters?

A:
Q: How many different letter arrangements can be formed using the letters TENNESSEE?

A: There are 9! permutations of the letters TENNESSEE if the letters are distinguishable.

However, 4 E’s are indistinguishable. There are 4! ways to order the E’s.
Permutations:
Indistinguishable Objects, Cont.

- 2 S’s and 2 N’s are indistinguishable. There are 2! orderings of each.

- Once all letters are ordered, there is only one place for the T.

If the E’s, N’s, & S’s are indistinguishable among themselves, then there are

\[
\frac{9!}{(4!\cdot 2!\cdot 2!)} = 3,780
\]

different orderings of T E N N E S S E E
Permutations: Indistinguishable Objects

Subsets of Indistinguishable Objects

Given n objects of which
$\textcolor{red}{a}$ are alike, $\color{red}{b}$ are alike, ..., and $\color{red}{z}$ are alike

There are \(\frac{n!}{a! \cdot b! \cdots z!} \) permutations.
Combinations: Unordered Arrangements

- **Combinations:** number of different groups of size \(r \) that can be chosen from a set of \(n \) objects (order is irrelevant)

- Q: From a group of 6 people, select 4. How many different possibilities are there?

- A: There are \(6P_4 = 360 \) different **orderings** of 4 people out of 6.

\[
6 \cdot 5 \cdot 4 \cdot 3 = 360 = \frac{n!}{(n-r)!}
\]
However the order of the chosen 4 people is irrelevant. There are 24 different orderings of 4 objects.

\[4 \cdot 3 \cdot 2 \cdot 1 = 24 = 4! = r! \]

Divide the total number of orderings by the number of orderings of the 4 chosen people.

\[\frac{360}{24} = 15 \text{ different groups of 4 people.} \]
The number of ways to choose r objects from a group of n objects.

$C(n,r)$ or $\binom{n}{r}$, read as “n choose r”

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]
Combinations: Unordered Arrangements

Q: From a group of 20 people, a committee of 3 is to be chosen. How many different committees are possible?

A:
Combinations:

Unordered Arrangements

Q: From a group of 5 men & 7 women, how many different committees of 2 men & 3 women can be found?

A:
Advanced web problems on permutations/combinations:
http://www.math.uah.edu/stat/comb/index.xml

The Birthday Problem
- http://www.mste.uiuc.edu/reese/birthday/intro.html (simulation applet)
- http://mathforum.org/dr.math/faq.birthdayprob.html (good details)
Overview

- Probability Review

- Fundamentals of Counting
 - Permutations: ordered arrangements
 - Combinations: unordered arrangements

- Selected Activities
Activity-based Materials for Learning Probability and Statistics

- Materials reviewed and demonstrated (simulations, discovery learning, group work)
- Overview of AP statistics
Contact Information

- Ginger Holmes Rowell, MTSU
 rowell@mtsu.edu
- Tracy Goodson-Espy, UAH
 tespy@pobox.com
- M. Leigh Lunsford, UAH
 lunsfol@email.uah.edu