Probability Review and Counting Fundamentals

Ginger Holmes Rowell, Middle TN State University Tracy Goodson-Espy and M. Leigh Lunsford, University of AL, Huntsville

Probability Review

Fundamentals of Counting
 Permutations: ordered arrangements
 Combinations: unordered arrangements

Selected Activities

Definitions Classical Probability Relative Frequency Probability Probability Fundamentals and Probability Rules

What is Probability?

Probability the study of chance associated with the occurrence of events

Types of Probability Classical (Theoretical) Relative Frequency (Experimental)

Listing All Possible Outcomes of a Probabilistic Experiment

There are various ways to list all possible outcomes of an experiment Enumeration Tree diagrams Additional methods – counting fundamentals

Three Children Example

- A couple wants to have exactly 3 children. Assume that each child is either a boy or a girl and that each is a single birth.
- List all possible orderings for the three children.

Enumeration

B	B	B
G	B	B
B	G	B
B	B	G
G	G	B
G	B	G
B	G	G
G	G	G

G

FIG BBB BBG BGB BGG GBB GBG GGB GGG

B

G

B

G

B

G

Sample Space - the list of all possible outcomes from a probabilistic experiment. 3-Children Example: $S = \{BBB, BBG, BGB, BGG,$ GBB, GBG, GGB, GGG} Each individual item in the list is called a Simple Event or Single Event.

P(event) = Probability of the event occurring

Example: $P(Boy) = P(B)=\frac{1}{2}$

Probability of Single Events with Equally Likely Outcomes

If each outcome in the sample space is <u>equally likely</u>, then the probability of any one outcome is 1 divided by the total number of outcomes.

For equally likely outcomes,

 $P(\text{simple event}) = \frac{1}{\text{total number of outcomes}}$

A couple wants 3 children. Assume the chance of a boy or girl is equally likely at each birth. What is the probability that they will have exactly 3 girls? What is the probability of having exactly 3 boys?

Probability of Combinations of Single Events

An event can be a combination of Single Events.

The probability of such an event is the sum of the individual probabilities.

Three Children Example Continued

P(exactly 2 girls) = ____ P(exactly 2 boys) = ___ P(at least 2 boys) = ___ P(at most 2 boys) = ___ P(at least 1 girl) = ___ P(at most 1 girl) =

Sample space =

Types of Probability

Classical (Theoretical)

Relative Frequency (Experimental, Empirical)

Relative Frequency Probability

Uses actual experience to determine the likelihood of an outcome.

What is the chance of making a B or better?

Grade	Frequency
A	20
B	30
C	40
Below C	10

Relative Frequency Probability is Great Fun for Teaching

Rolling Dice Flipping Coins Drawing from Bags without Looking (i.e. Sampling) Sampling with M&M's (http://mms.com/cai/mms/fag.html#w hat percent)

Empirical Probability

Given a frequency distribution, the probability of an event, E, being in a given group is

$$P(E) = \frac{\text{frequency of the group}}{\text{total frequencies in the distribution}} = \frac{x}{n}$$

Two-way Tables and Probability

and M)

	Made A	Made < A	Total	Find P(M)
Male	30	45		P(A)
Female	60	65		
Total				P(A ar

Teaching Idea

Question: How Can You Win at Wheel of Fortune?

Answer: Use Relative Frequency Probability (see handout)

Source. Krulik and Rudnick. "Teaching Middle School Mathematics Activities, Materials and Problems." p. 161. Allyn & Bacon, Boston. 2000.

What is wrong with the statements?
The probability of rain today is -10%.
The probability of rain today is 120%.
The probability of rain or no rain today is 90%.

 $P(event) \ge 0$ $P(event) \le 1$ P(sample space) = 1

Probability Rules

В

Let A and B be events

Complement Rule: P(A) + P(not A) = 1

А

Set Notation

Intersection: A and B

Probability Rules

Union P(AUB) = P(A or B)

$\overline{P(A \cup B)} = P(A) + P(B) - P(A \cap B)$

Teaching Idea

Venn Diagrams

Kyle Siegrist's Venn Diagram Applet

http://www.math.uah.edu/stat/applets/ index.xml

Two-way Tables and Probability

	Made	Made	Total	Find
	A	< A		P(M)
Male	30	45	75	P(A)
Female	60	65	125	P(A and P(A if M
Total	90	110	200	

M)

P(A|B) = the conditional probability of event A happening given that event B has happened "probability of A given B"

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Independence

Events A and B are "Independent" if and only if

$$P(A \mid B) = P(A)$$

From the two-way table, is making an "A" independent from being male?

Teaching Idea: Discovery Worksheets Basic Probability Rules (see handout) Basic Probability Rules (long version) http://www.mathspace.com/NSF ProbS tat/Teaching Materials/Lunsford/Basic Prob Rules Sp03.pdf Conditional Probability http://www.mathspace.com/NSF ProbStat /Teaching Materials/Lunsford/Conditional Prob Sp03.pdf

Probability Review

Fundamentals of Counting
 Permutations: ordered arrangements
 Combinations: unordered arrangements

Selected Activities

Counting Techniques

Fundamentals of Counting

Permutations: ordered arrangements

Combinations: unordered arrangements

Q: Jill has 9 shirts and 4 pairs of pants. How many different outfits does she have?

- A:

Multiplication Principle:

If there are a ways of choosing one thing, and b ways of choosing a second thing after the first is chosen, then the total number of choice patterns is:

a x b

Q: 3 freshman, 4 sophomores, 5 juniors, and 2 seniors are running for SGA representative. One individual will be selected from each class. How many different representative orderings are possible?

Generalized Multiplication Principle:

If there are a ways of choosing one thing, b ways of choosing a second thing after the first is chosen, and c ways of choosing a third thing after the first two have been chosen...and z ways of choosing the last item after the earlier choices, then the total number of choice patterns is a x b x c x ... x z

Local Examples

Q: When I lived in Madison Co., AL, the license plates had 2 fixed numbers, 2 variable letters and 3 variable numbers. How many different license plates were possible?

Q: How many more license plate numbers will Madison County gain by changing to 3 letters and 2 numbers?

Q: Given 6 people and 6 chairs in a line, how many seating arrangements (orderings) are possible?

Q: Given 6 people and 4 chairs in a line, how many different orderings are possible?

Permutation of *n* objects taken *r* at a time: *r*-permutation, P(*n*,*r*), *n*Pr

Q: Given 6 people and 5 chairs in a line, how many different orderings are possible?

= <u>n!</u> (n-r)!

 $\Big|_{n} P_{r} = \frac{n!}{(n-r)!}$

Q: How many different batting orders are possible for a baseball team consisting of 9 players?

Q: How many different batting orders are possible for the leading four batters?

Permutations: Indistinguishable Objects

Q: How many different letter arrangements can be formed using the letters T E N N E S S E E ?

A: There are 9! permutations of the letters T E N N E S S E E if the letters are <u>distinguishable</u>.

However, 4 E's are indistinguishable. There are 4! ways to order the E's.

Permutations: Indistinguishable Objects, Cont.

2 S's and 2 N's are <u>indistinguishable</u>. There are 2! orderings of each.

Once all letters are ordered, there is only one place for the T.

If the E's, N's, & S's are <u>indistinguishable</u> among themselves, then there are <u>9!</u> = 3,780 different orderings of (4!·2!·2!) **TENNESSEE**

Permutations: Indistinguishable Objects

Subsets of Indistinguishable Objects

Given *n* objects of which *a* are alike, *b* are alike, ..., and *z* are alike

There are <u>n!</u> permutations. <u>a!·b!···z!</u>

Combinations: number of different groups of size r that can be chosen from a set of n objects (order is irrelevant)

Q: From a group of 6 people, select 4. How many different possibilities are there?

• A: There are ${}_{6}P_{4}$ =360 different <u>orderings</u> of 4 people out of 6. $6 \cdot 5 \cdot 4 \cdot 3 = 360 = {}_{6}P_{4} = \frac{\underline{n!}}{(n-r)!}$

Unordered Example continued

However the <u>order</u> of the chosen 4 people is irrelevant. There are 24 different orderings of 4 objects.

 $4 \cdot 3 \cdot 2 \cdot 1 = 24 = 4! = r!$

Divide the total number of orderings by the number of orderings of the 4 chosen people.
 <u>360</u> = <u>15 different groups of 4 people</u>.

The number of ways to choose *r* objects from a group of *n* objects.

C(n,r) or ${}_{n}C_{r}$, read as "*n* choose *r*"

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Q: From a group of 20 people, a committee of 3 is to be chosen. How many different committees are possible?

Q: From a group of 5 men & 7 women, how many different committees of 2 men & 3 women can be found?

<mark>-</mark> A:

Teaching Idea

- Advanced web problems on permutations/combinations: <u>http://www.math.uah.edu/stat/comb/inde</u> <u>x.xml</u>
- The Birthday Problem
 - <u>http://www.mste.uiuc.edu/reese/birthd</u> <u>ay/intro.html</u> (simulation applet)
 - <u>http://mathforum.org/dr.math/faq.birth</u> <u>dayprob.html</u> (good details)

Probability Review

Fundamentals of Counting
 Permutations: ordered arrangements
 Combinations: unordered arrangements

Selected Activities

Thursday, Feb. 12th, 3:30

 Activity-based Materials for Learning Probability and Statistics
 Materials reviewed and demonstrated (simulations, discovery learning, group work)
 Overview of AP statistics

Contact Information

Ginger Holmes Rowell, MTSU rowell@mtsu.edu Tracy Goodson-Espy, UAH tespy@pobox.com M. Leigh Lunsford, UAH lunsfol@email.uah.edu