# Probability Review and Counting Fundamentals 

Ginger Holmes Rowell, Middle TN State University Tracy Goodson-Espy and M. Leigh Lunsford, University of AL, Huntsville

## Overview

## - Probability Review

- Fundamentals of Counting
$\otimes$ Permutations: ordered arrangements
\& Combinations: unordered arrangements
- Selected Activities


## Probability Review

- Definitions
- Classical Probability
- Relative Frequency Probability
- Probability Fundamentals and Probability Rules


## What is Probability?

- Probability
the study of chance associated with the occurrence of events
- Types of Probability
\&Classical (Theoretical)
$\otimes$ Relative Frequency (Experimental)


## Classical Probability

Rolling dice and tossing a coin are activities associated with a classical approach to probability. In these cases, you can list all the possible outcomes of an experiment and determine the actual probabilities of each outcome.

## Listing All Possible Outcomes of a Probabilistic Experiment

- There are various ways to list all possible outcomes of an experiment
$\otimes$ Enumeration
*Tree diagrams
*Additional methods - counting fundamentals


## Three Children Example

- A couple wants to have exactly 3 children. Assume that each child is either a boy or a girl and that each is a single birth.
- List all possible orderings for the three children.


Enumeration
$1^{\text {st }}$ Child $2^{\text {nd }}$ Child $3^{\text {rd }}$ Child


## Tree Diagrams

## $1^{\text {tr }}$ Child $2^{\text {nd }}$ Child $3^{\text {rud }}$ Child



## Definitions

- Sample Space - the list of all possible outcomes from a probabilistic experiment. *3-Children Example:

$$
S=\{B B B, B B G, B G B, B G G,
$$

GBB, GBG, GGB, GGG\}

- Each individual item in the list is called a Simple Event or Single Event.


## Probability Notation

$\mathrm{P}($ event $)=$ Probability of the event occurring

Example: $P($ Boy $)=P(B)=1 / 2$


## Probability of Single Events with Equally Likely Outcomes

- If each outcome in the sample space is equally likely, then the probability of any one outcome is 1 divided by the total number of outcomes.

For equally likely outcomes,
$P($ simple event $)=$ 1

## total number of outcomes

## Sithree Children Example Continued

- A couple wants 3 children. Assume the chance of a boy or girl is equally likely at each birth.
- What is the probability that they will have exactly 3 girls?
- What is the probability of having exactly 3 boys?


# Probability of Combinations of Single Events 

- An event can be a combination of Single Events.
- The probability of such an event is the sum of the individual probabilities.
$P($ exactly 2 girls $)=$ P(exactly 2 boys) $=$ $\qquad$ $P$ (at least 2 boys) $=$ $P($ at most 2 boys $)=$ $P($ at least 1 girl) $=$ $P($ at most 1 girl) $=$ $=$
- Sample space =


## Types of Probability

- Classical (Theoretical)
- Relative Frequency (Experimental, Empirical)



## Relative Frequency Probability

- Uses actual experience to determine the likelihood of an outcome.
- What is
the chance of making
a B or better?

| Grade | Frequency |
| :---: | :---: |
| A | 20 |
| B | 30 |
| C | 40 |
| Below C | 10 |

## Relative Frequency Probability is Great Fun for Teaching

- Rolling Dice
- Flipping Coins

- Drawing from Bags without Looking (i.e. Sampling)
- Sampling with M\&M's (http://mms.com/cai/mms/faq.html\#w hat percent)


## Empirical Probability

- Given a frequency distribution, the probability of an event, E, being in a given group is
frequency of the group


## Two-way Tables and Probability

|  | Made <br> A | Made <br> < A | Total |
| :--- | :---: | :---: | :--- |
| Male | 30 | 45 |  |
| Female | 60 | 65 |  |
| Total |  |  |  |

- Find $\mathrm{P}(\mathrm{M})$
$P(A)$

P(A and M)


## Teaching Idea

- Question: How Can You Win at Wheel of Fortune?
- Answer: Use Relative Frequency Probability (see handout)

Source. Krulik and Rudnick. "Teaching Middle School Mathematics Activities, Materials and Problems."
p. 161. Allyn \& Bacon, Boston. 2000.

## Probability Fundamentals

- What is wrong with the statements? $\star$ The probability of rain today is $-10 \%$. $\star$ The probability of rain today is $120 \%$. *The probability of rain or no rain today is 90\%.

$$
\begin{aligned}
& P(\text { event }) \geq 0 \\
& P(\text { event }) \leq 1 \\
& P(\text { sample space })=1
\end{aligned}
$$

$\because \quad$ Probability Rules

Complement Rule:
$P(A)+P($ not $A)=1$

## Set Notation

- Union: A or B (inclusive "or")

$$
A \cup B
$$



- Intersection: A and B



## Probability Rules

Union $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A}$ or B$)$

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

## Teaching Idea

- Venn Diagrams
- Kyle Siegrist's Venn Diagram Applet
http://www.math.uah.edu/stat/applets/ index.xml


## Two-way Tables and Probability

|  | Made <br> A | Made <br> $<\mathrm{A}$ | Total | Find <br> $\mathrm{P}(\mathrm{M})$ |
| :---: | :---: | :---: | :---: | :--- | :--- |
| Male | 30 | 45 | 75 | $\mathrm{P}(\mathrm{A})$ |
| Female | 60 | 65 | 125 | $\mathrm{P}(\mathrm{A}$ and M) <br> $\mathrm{P}(\mathrm{A}$ if M) |
| Total | 90 | 110 | 200 | \begin{tabular}{\|l|l|l|}
\hline
\end{tabular} |

## Conditional Probability

$P(A \mid B)=$ the conditional probability of event A happening given that event $B$ has happened "probability of A given B"


## Independence

- Events A and B are "Independent" if and only if

$$
P(A \mid B)=P(A)
$$

- From the two-way table, is making an "A" independent from being male?


## Teaching Idea:

 Discovery Worksheets*Basic Probability Rules (see handout)
*Basic Probability Rules (long version) http://www.mathspace.com/NSF ProbS tat/Teaching_Materials/Lunsford/Basic_ Prob Rules Sp03.pdf
*Conditional Probability
http://www.mathspace.com/NSF ProbStat /Teaching_Materials/Lunsford/Conditional Prob Sp03.pdf

## Overview

## - Probability Review

- Fundamentals of Counting
\&Permutations: ordered arrangements
\& Combinations: unordered arrangements
- Selected Activities


## Counting Techniques

## - Fundamentals of Counting

- Permutations: ordered arrangements

- Combinations: unordered arrangements


## Fundamentals of Counting

- Q: Jill has 9 shirts and 4 pairs of pants. How many different outfits does she have?
- A:



## Fundamentals of Counting

## - Multiplication Principle:

If there are a ways of choosing one thing, and $b$ ways of choosing a second thing after the first is chosen, then the total number of choice patterns is:
$a \times b$

## Fundamentals of Counting

- Q: 3 freshman, 4 sophomores, 5 juniors, and 2 seniors are running for SGA representative. One individual will be selected from each class. How many different representative orderings are possible?
- A:


## Fundamentals of Counting

- Generalized Multiplication Principle:
- If there are a ways of choosing one thing, $b$ ways of choosing a second thing after the first is chosen, and c ways of choosing a third thing after the first two have been chosen...and $\mathbf{z}$ ways of choosing the last item after the earlier choices, then the total number of choice patterns is $a \times b \times c \times \ldots \times z$


## Local Examples

- Q: When I lived in Madison Co., AL, the license plates had 2 fixed numbers, 2 variable letters and 3 variable numbers. How many different license plates were possible?
- A:



## Fundamentals of Counting

Q: How many more license plate numbers will Madison County gain by changing to 3 letters and 2 numbers?

- A:


## Permutations:

## Ordered Arrangements



- Q: Given 6 people and 6 chairs in a line, how many seating arrangements (orderings) are possible?
- A:


## Permutations:

## Ordered Arrangements



- Q: Given 6 people and 4 chairs in a line, how many different orderings are possible?
- A:


## Permutations:

## Ordered Arrangements

- Permutation of $n$ objects taken $r$ at a time: $r$-permutation, $\mathrm{P}(n, r), n \mathrm{P}_{r}$
- Q: Given 6 people and 5 chairs in a line, how many different orderings are possible?
- A:


## Ordered Arrangements

$$
\begin{aligned}
{ }_{n} P_{r} & =n(n-1) \cdots(n-(r-1)) \\
& =n(n-1) \cdots(n-r+1) \\
& =n(n-1) \cdots(n-r+1) \frac{(n-r)!}{(n-r)!} \\
& =\frac{n(n-1) \cdots(n-r+1)(n-r) \cdots(3)(2)(1)}{(n-r)!} \\
& =\frac{n!}{(n-r)!} \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}
\end{aligned}
$$

## Permutations:

## Ordered Arrangements

- Q: How many different batting orders are possible for a baseball team consisting of 9 players?
- A:


## Permutations:

## Ordered Arrangements

- Q: How many different batting orders are possible for the leading four batters?
- A:


## Permutations: Indistinguishable Objects

- Q: How many different letter arrangements can be formed using the letters T E N N E S S E E ?
- A: There are 9! permutations of the letters T E N N E S S E E if the letters are distinguishable.
- However, 4 E's are indistinguishable. There are 4! ways to order the E's.


# Permutations: <br> Indistinguishable Objects, Cont. 

- 2 S's and 2 N's are indistinguishable. There are 2! orderings of each.
- Once all letters are ordered, there is only one place for the T.

If the E's, N's, \& S's are indistinguishable among themselves, then there are
$\frac{9!}{}=3,780$ different orderings of

## Permutations: Indistinguishable Objects

Subsets of Indistinguishable Objects

Given $n$ objects of which a are alike, $b$ are alike, ..., and z are alike

There are $n!$ permutations.

$$
a!\cdot b!\cdot \cdot z!
$$

## Combinations:

## Unordered Arrangements

- Combinations: number of different groups of size $r$ that can be chosen from a set of $n$ objects (order is irrelevant)
- Q: From a group of 6 people, select 4. How many different possibilities are there?
- A: There are ${ }_{6} \mathrm{P}_{4}=360$ different orderings of 4 people out of 6 .

$$
6 \cdot 5 \cdot 4 \cdot 3=360={ }_{6} \mathrm{P}_{4}=\frac{n!}{(n-r)!}
$$

## Unordered Example continued

- However the order of the chosen 4 people is irrelevant. There are 24 different orderings of 4 objects.

$$
4 \cdot 3 \cdot 2 \cdot 1=24=4!=r!
$$

- Divide the total number of orderings by the number of orderings of the 4 chosen people.
$\frac{360}{24}=15$ different groups of 4 people.


## Combinations: Unordered Arrangements

The number of ways to choose $r$ objects from a group of $n$ objects.
$C(n, r)$ or ${ }_{n} C_{r}$, read as " $n$ choose $r$ "

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

## Combinations: Unordered Arrangements

- Q: From a group of 20 people, a committee of 3 is to be chosen. How many different committees are possible?
- A:


## Combinations: Unordered Arrangements

- Q: From a group of 5 men \& 7 women, how many different committees of 2 men \& 3 women can be found?
- A:


## Teaching Idea

- Advanced web problems on permutations/combinations:
http://www.math.uah.edu/stat/comb/inde X.xml
- The Birthday Problem
*http://www.mste.uiuc.edu/reese/birthd ay/intro.html (simulation applet)
*http://mathforum.org/dr.math/faq.birth dayprob.html (good details)


## Overview

## - Probability Review

- Fundamentals of Counting
$\otimes$ Permutations: ordered arrangements
\& Combinations: unordered arrangements
- Selected Activities


## Thursday, Feb. 12th, 3:30

- Activity-based Materials for Learning Probability and Statistics
*Materials reviewed and demonstrated (simulations, discovery learning, group work)
*Overview of AP statistics


## Contact Information

- Ginger Holmes Rowell, MTSU rowell@mtsu.edu
- Tracy Goodson-Espy, UAH tespy@pobox.com
- M. Leigh Lunsford, UAH lunsfol@email.uah.edu

