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1. Introduction 
 
Heeding the call of previous researchers (delMas, 
Garfield, and Chance 1999a), we used a classroom 
research model to investigate students’ understanding 
of concepts related to sampling distributions of sample 
means and the Central Limit Theorem (CLT).   It was 
our goal to build on previous researchers’ work when 
implementing our teaching methods and assessing our 
students (delMas, et. al. 1999a, 1999b, 1999c, 2002).  
We applied the classroom research model to the first 
course of a two-semester post-calculus mathematical 
probability and statistics sequence taught at a small 
engineering and science oriented, Ph.D. granting 
university in the southeastern United States with an 
approximate undergraduate enrollment of 5000.  
Throughout this paper, when we refer to “sampling 
distribution(s),” we are only considering sampling 
distributions of the sample mean. 
 
The focus of this paper is our examination of students’ 
graphical understanding of the CLT and related 
concepts as presented at the Joint Statistics Meeting in 
August, 2005.   For a more detailed analysis that 
includes students’ numerical understanding, results 
from the second course of the two-semester post-
calculus sequence, and comparison to results from 
previous studies, please see our paper and website 
(Lunsford, Rowell, Goodson-Espy 2005).   
 
Below we describe our work via the phases of Action 
Research as applied to statistics education in the model 
presented by delMas, et. al. (1999a). 
 
2. Phase 1: What is the problem?   I.e. What is not 

working in the classroom? 
    
While introductory statistics courses have been the 
focus of reform curricula and pedagogy  (Rossman, 
Chance, and Ballman 1999; Garfield 2001), the typical 
two-semester mathematical probability and statistics 
sequence has not received the same degree of attention 

and is generally taught with traditional methods 
(Rossman and Chance 2002).  Since most of our 
students (sciences, education, engineering and 
computer science majors) will only take the first 
course of the sequence, there is a need for the injection 
of more statistical concepts here.  This especially 
applies to sampling distributions and the CLT.  Due to 
the generally late, short, and fast coverage of sampling 
distributions and the CLT in the first semester of our 
mathematical probability and statistics sequence, our 
students may not develop a deep understanding of 
these important concepts.  Thus we wanted to enhance, 
assess, and improve our teaching of sampling 
distributions and the CLT in that course.    
 

3. Phase 2:  Techniques to Address the Problem 
 
In the Spring of 2004, as part of an NSF adaptation and 
implementation (A&I) grant (Lunsford, Goodson-
Espy, and Rowell 2002), we attempted to infuse 
reform-based pedagogies into the first semester of our 
mathematical probability and statistics by 
incorporating activity and web-based materials 
(Rossman and Chance 1999; Siegrist 1997).  We will 
refer to this course as Math 300 (Introduction to 
Probability).  Seventeen of the thirty-five students 
originally enrolled in the course were computer 
science majors.   Only three of the students were 
Mathematics majors with the remainder of the students 
coming from engineering (seven students) and other 
disciplines (eight students) including the other 
sciences, business, and graduate school.    
 
To teach sampling distributions and the CLT in the 
course we used a traditional text (Hogg and Tanis 
2001) along with a computer simulation called 
Sampling SIM (delMas 2001), and an activity for use 
with the simulation.  The activity, Sampling 
Distributions and Introduction to the Central Limit 
Theorem, was slightly modified from one provided by 
Rossman, et. al. (1999) and is an earlier version of an 
activity by Garfield, delMas, and Chance (2000).   
Please see our paper and website (Lunsford, et. al. 
2005) for a copy of the activity.  After an initial in-
class demonstration of Sampling SIM, the activity was 
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assigned as an out-of-class group project for which the 
students turned in a written follow-up report.   
 

4. Phase 3:  Evidence to Collect to Determine if 
Implementation Effective. 

 
Building on the work of previous researchers, we used 
a quantitative assessment tool graciously provided to 
us by Robert delMas.  Please see our paper and 
website (Lunsford, et. al. 2005) for a copy of this 
assessment tool.  We used the assessment tool as both 
a pretest and a posttest for both courses.  The pretest 
was administered before covering sampling 
distributions and the central limit theorem.  We did not 
return the pretest to the students nor did we give the 
students feedback regarding their pretest performance.  
The posttest was administered on the last day of class 
as an in-class quiz (each student had turned-in a report 
from the activity during the previous class period).  A 
qualitative assessment tool developed by the authors 
was also given to the students at the beginning of the 
semester and at the end of the semester.  This tool 
measured students’ attitudes and beliefs about several 
aspects of the course including their use of technology 
and their understanding of concepts.  
   
4.1 Graphical Understanding  
 
To assess our students’ graphical understanding of 
sampling distributions and the CLT, we examined 
Question 5 of the quantitative assessment tool.  This 
was an assessment item that was more graphical in 
nature and most directly related to the Sampling SIM 
program and the activity used.  In this question, the 
students were given the graph of an irregular 
population distribution and five possible choices for 
the histogram of the sampling distribution (assuming 
500 samples each of a specified size n ).  Figure 1, to 
the right, shows the population distribution and 
sampling distribution choices (Choices A through E).  
Question 5a asked students to select which graph 
represents a distribution of sample means for 500 
samples of size (Answer=C) whereas Question 
5e asked students to select which graph represents a 
distribution of sample means for 500 samples of size 

(Answer=E).   

4n =

25n =
 
4.1.1 Correct Choice of Sampling Distribution 
 
We first examined how well our students were able to 
choose the correct sampling distribution in Question 5.  
The percent of students that correctly identified the 
sampling distribution for large sample sizes ( 25n = ) 
on the pretest was 16.7%.  The percent correct 
increased to 77.8% on the posttest.  With only 33% 

correct on the posttest, our students had a more 
difficult time correctly choosing the graph of the 
sampling distribution when the sample size was small 
( 4n = ) than when the sample size was large.   
 
4.1.2 Reasoning Pair Classifications 
 
Following the work of delMas, et. al. (2000, 1999 a, 
b), we next examined reasoning pair classifications for 
our Math 300 students.  The idea is to classify student 
reasoning about the shape and variability of the 
sampling distribution as the sample sizes increases 
from small to large.  For a complete description of the 
reasoning pair classifications, please see our paper and 
website (Lunsford, et. al. 2005).  In the first column of 
Table 1, on the next page, we show our Math 300 
students posttest reasoning pairs for Question 5.  
Please see Figure 1 below for a quick reference to the 
graphs for this problem.   
 
Figure 1.  Population Distribution (Top Left) and 
Possible Sampling Distributions (A-E) for the 
Irregular Population.  (Used with permission from 
Garfield, delMas and Chance 2000) 
 
 

 
 
In the first row of Table 1, we see that 5 students 
(27.8%) gave the answer that graph C was the 
sampling distribution for a sample size of 4n = and 
graph E was the sampling distribution for 25n =  (i.e. 
reasoning pair (C, E)).  These students have the correct 
classification below the reasoning pair.  In row two we 
have 2 students who answered B and E for 4n = and 

25n = , respectively, which we consider a good 
classification (here we differ with delMas, et. al. 
(2000) who classified this response as large-to-small 
normal).  In the third row we had 7 students with a 
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reasoning pair of (A, E).  Observe that the reasoning 
pair in the second row is better than the pair in the 
third row because while both sets of students had the 
correct graph for , the students in the second 
row did choose a distribution with less variability than 
the population for  but the students in the third 
row did not.  However, all of the students in these two 
rows chose a sampling distribution for with a 
shape more like that of the population.  Thus the 
reasoning pairs in the first column are essentially 
ranked from the best (i.e. correct) to worst answers.  

25n =

4n =

4n =

 

 
There are several interesting items to note from Table 
1.  First, of the 6 students (33.3%) who were able to 
choose the correct sampling distribution for 

most were also able to choose the correct 
sampling distribution for .  Also, all of our 14 
students (77.8%) who chose the correct sampling 
distribution for appeared in the top three 
reasoning categories.  We wanted to see if the data 
could give us any insight as to why most of our 

students (12 out of 18) did not choose the correct 
sampling distribution for .   

4n =
25n =

25n =

4n =
 
4.1.3 Consistent Graphical Reasoning 
 
To determine if our students were getting incorrect 
answers because of graphical misconceptions about 
variability and/or shape or because of some 
misunderstanding of sampling distributions, we 
defined and computed a measure of consistent 
graphical reasoning using Question 5.  This essentially 
measured how well our students could distinguish 

between the shape and spread of the sampling 
distribution they chose and the shape and spread of the 
population.  In addition to asking the students to 
choose a sampling distribution, the assessment tool 
asked them to compare the variance and shape of the 
sampling distribution they chose to the population 
variance and shape.  A student is defined to 
demonstrate consistent graphical reasoning if the 
sampling distribution chosen is consistent with their 
stated expected variance and shape of the sampling 
distribution as compared to the population (even if 

Table 1.  Math 300 Posttest Comparison of Irregular Distribution Reasoning Pairs and Consistent Graphical 
Reasoning for  4n =

4n =  Sampling 
Distribution Shaped 

More Like: 
(Question 5(b)) 

Variability of  
Sampling Distribution 

compared to Population: 
(Question 5(c)) 

4n =Posttest 
Reasoning Pair 

Irregular 
Population 

Distribution 
(Question 5) 

( ; ) 4n = 25n =

 

Answer Number of 
Students Answer Number of 

Students 

 
 
 

Consistent 
Graphical 
Reasoning 

Number 
(Percent) of 

Students 
( ) 18N =

 

(C, E) 
Correct 5  (27.8%) Normal 5 Less 5 5 

(B, E) 
Good (Large-to-
Small Normal) 

2  (11.1%) Pop. 2 Less 2 2 

Same 4 4 (A, E) 
Large-to-Small 

Normal 
7  (38.9%) Pop. 7 

Less* 3 0* 
(A, B) 

Large-to-Small 
Population 

1 (5.6%) Normal* 1 More* 1 0* 

(E, D) or 
(E, C) 

Small-to-Large 
2  (11.1%) Normal 2 Less 2 2 

(C, D) 
Other 1 (5.6%) Normal 1 Less 1 1 

 
Totals 

 
18 

Normal 
Pop. 

9 
9 

Less 
Same 
More 

13 
4 
1 

 
14 
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their choice of sampling distribution is incorrect).   We 
call this measure consistent because if the sampling 
distribution they chose was not the same (in terms of 
shape and variability) as what they say they expected, 
there was some inconsistency in their answer.   
 
We saw significant improvement in our students from 
pretest to posttest in their demonstration of consistent 
graphical reasoning.  Of our 18 students, the number 
who demonstrated consistent graphical reasoning 
increased from 3 to 14 (16.7 to 77.8%) for the small 
sample size ( ) and from 2 to 15 (11.1 to 83%) 
for the large sample size ( ).  Also, while only 
33.3% (6 students) correctly identified the sampling 
distribution for the irregular population with 

4n =
25n =

4n = on 
the posttest, 77.8% (14 students) were consistent in 
their actual choice for the sampling distribution and 
their stated expected shape and variance of the 
sampling distribution as compared to the population.  
We remark that all of the students who were correct 
were also consistent for .  Please see our paper 
and website (Lunsford, et. al. 2005) for additional 
details on how we computed the number of students 
that demonstrated consistent graphical reasoning.   

4n =

 
We find the consistent graphical reasoning results 
interesting for several reasons.  First, via our NSF 
grant, we were using activities and graphical devices 
such as applets throughout the semester in our Math 
300 class.  Thus we were surprised at the low percent 
of our students displaying consistent graphical 
reasoning on the pretest.  Because the pretest for this 
class was administered late in the semester (around the 
tenth week of class) we expected these students to 
graphically understand shape and spread and hence be 
consistent, even if not correct, with their choice of 
sampling distribution. However, upon contemplation 
we realized that the Sampling Distributions activity 
was the only assignment we gave that actually had the 
students investigating shape and spread in a graphical 
setting, albeit in the context of learning about sampling 
distributions and CLT.   
 
Second, from these results we do not believe that on 
the posttest the majority of our Math 300 students were 
having major difficulties with consistent graphical 
reasoning (such as confusing frequency with 
variance).  Rather it appears that our students had some 
misunderstandings about sampling distributions.   
 
4.2 Comparison of Reasoning Pairs and Consistent 
Graphical Reasoning 
 
In Table 1 above we also represent a deeper look into 
our data to try to determine how our students may be 

misunderstanding concepts about sampling 
distributions and the CLT.  Recall the reasoning pairs 
in the first column are essentially in order from the 
best to worst answers.  Also recall the first component 
in the answer pair is the distribution the student chose 
for the sampling distribution for .  The next two 
columns indicate the students’ answers for the 
expected shape and variability of the sampling 
distribution when 

4n =

4n =  compared to the irregular 
population from which the samples had been drawn.   
The last column shows the students who have been 
classified as showing consistent graphical reasoning.  
An asterisk has been placed by the students in that 
column who did not show consistent graphical 
reasoning and along the corresponding row on where 
their reasoning failed.  Note that three of the students 
who had the answer pair (A, E) did not display 
consistent graphical reasoning because they said they 
expected the sampling distribution to have less 
variability than the population (which is correct) but 
they chose a sampling distribution (A) that did not 
have this property. 
 
Using Table 1 we make some observations and 
conjectures about our students’ understanding of 
sampling distributions and the CLT.  First we observe 
that of our 9 (50%) students who said they expected 
the sampling distribution to have a shape more like the 
population, all had chosen a sampling distribution with 
this property and were thus consistent in terms of 
shape.  Also, all of these students chose the correct 
sampling distribution for .  We suspect that 
many of our students were not recognizing how 
quickly the sampling distribution becomes unimodal as 

 increases.  This is not surprising since students are 
used to thinking of the CLT as a limiting result that 
doesn’t really take effect until the “magic” sample size 
of 30.  Next we observe that the majority of our 
students (13 out of 18) correctly stated that they would 
expect the sampling distribution to have less variability 
than the population.  For the two students who chose E 
for the sampling distribution, it may have been because 
they were not able to graphically estimate the 
magnitude of the standard deviation.  

25n =

n

 
For the three students who answered “less” but who 
chose A for the sampling distribution, we are not sure 
if they did so because they were either not able to 
estimate the magnitude of the standard deviation or 
they may have been confusing variability with 
frequency (due to the difference in heights of the 
histogram bars versus the height of the population 
distribution).  Lastly, we think the four students who 
answered “the same” (and were thus consistent in their 
choice of A for the sampling distribution) may be 
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confusing the limiting result about the shape of the 
sampling distribution (i.e. as n increases the shape 
becomes approximately normal, via the CLT) with the 
fixed (i.e. non-limiting) result about the variance of the 
sampling distribution, regardless of its shape (i.e. the 
variance of the sampling distribution is , via 
mathematical expectation).  So, as they did regarding 
the shape, these students may be thinking the 
variability result does not “kick in” until the sample 
size is greater than 30.  We found it interesting that 15 
(83%) of our students stated it was “true” that if the 
population standard deviation equals 

2 / nσ

σ  then the 
standard deviation of the sample means in a sampling 
distribution (using samples of size ) from that 
population is equal to 

n
/ nσ .  All of the students in 

the top four rows of the Table 1 answered “true” this 
question, except one who did not answer the question.  
Thus we believe that our students where able to 
validate this fact when it was presented to them yet 
they did not understand it well enough to extend their 
knowledge to the graphical realm. 
 
4.3 Qualitative Results 
 
Our students generally showed a positive response to 
the use of activities and simulations and believed that 
they contributed to their learning.  In addition to 
observing this in the classroom, we also saw it in our 
qualitative results.  Students enrolled in the Math 300 
class completed two surveys, each given as a take 
home assignment at the beginning (pre-survey) and 
end (post-survey) of the semester, and an end-of-
course e-mail interview administered by an external 
evaluator.  On the post-survey, students mentioned the 
CLT activity (13 out of 21, 62%) and group activities 
and group/individual reports in general (17 out of 21, 
81%) as “contributing positively” to their learning.  
They also believed that the technology used in the 
class (Minitab and computer simulation activities) 
helped them learn the material (13/21 or 62%); that 
methods used in presenting the activities and/or class 
demonstrations stimulated their interest in the material 
(13/21); and that the class stimulated their problem 
solving skills (17/21).  For more details of our 
qualitative results, please see our paper and website 
(Lunsford, et. al. 2005).   
 

5. Phase 4:  Conclusions, Conjectures, and What 
Should be Done Next 

   
While in general our post-calculus probability and 
statistics students are more sophisticated 
mathematically than our algebra-based introductory-
level statistics students, we should not necessarily 
expect them to have good graphical interpretation, 

comparison, and reasoning skills concerning sampling 
distributions even if they understand the basic theory 
and are able to perform computations using the theory.  
Just demonstrating graphical concepts in class via 
computer simulation was not sufficient for our students 
to develop these skills.  This could be thought of as 
common sense:  If you want your students to 
understand certain concepts, then these concepts need 
to be part of what you emphasize in their assignments.   
 
We believe the classroom research model enabled us to 
gain insight into our students’ understanding of the 
CLT and related concepts.  To continue using 
classroom research to improve our teaching, we will 
find, develop, and use assessment tools to obtain 
quantitative information regarding our students’ 
understanding of concepts.  For more conclusions and 
conjectures based on our research and information on 
resources for activities and assessment tools, please see 
our paper and website (Lunsford, et. al. 2005).   
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