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Sudoku Generation and Difficulty Metrics 
 

Introduction 

 We develop an algorithm to construct solvable Sudoku puzzles of varying difficulties 

with a unique solution.  The algorithm begins by creating a completed Sudoku board, and then 

removes entries while knowing that it will remain solvable and has one sole solution.  The 

boards produced by this algorithm represent only a small fraction of all possible filled-board 

enumerations.  Many Sudoku generators employ a similar tactic and allow for a user-specific 

difficulty rating determining which puzzle is presented to them. Our goal is to define difficulty 

metrics applicable to our generated puzzles and extensible to boards that our algorithm fails to 

generate.  Sudoku difficulties may be derived in a number of ways such as computer 

computation times, human computation times, or counting the logical steps required for various 

deduction methods.  An algorithm produces a puzzle that must satisfy two initial requirements; 

 

(i) The puzzle must be solvable, and 

(ii) The puzzle must have a unique solution. 

 

Terminology and Background Information 

We assume the rules of Sudoku are widely known.  For an explanation of the terminology 

which shall be used throughout this paper, see Figure 1 below. 

 

 
Figure 1 – Pillars (1) are made up of three adjacent columns (red) that form 

three blocks (blue).  Ribbons (2) are three adjacent rows (yellow) that also 

form three distinct blocks.  A minor column (green) is a single column of a 

block and a minor row (purple) is a single row of a block.  An entry 

(orange) is just one element of the puzzle. 

 

 The calculation of the number of all possible board enumerations was published in 2005 

and is 6,670,903,752,021,072,936,960
[1]

.  The number of possible essentially different 

2 
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enumerations—neglecting group symmetry operations and relabeling—is estimated to be 

5,472,730,538
[2]

.  The lowest number of givens for a puzzle to remain solvable is still unknown, 

but the smallest irreducible puzzles constructed thus far have only 17 given entries. 

 

Problem Analysis 

 Our puzzle generating algorithm must incorporate and accomplish a minimal number of 

tasks.  First, unique boards must be produced.  By unique, we mean, 

 

If mnij aa , for some mi and nj , then mjin aa . 

 

Second, entries are removed in a symmetric fashion for aesthetic purposes only—there is no 

reason for published puzzles to maintain any symmetry, it is just a logic rule for puzzle creation.  

Third, after any entry elimination, a solver must verify a solution still exists and is the same as 

the original board.  Fourth, a difficulty index must be calculable for the generation of each board.  

And lastly, the algorithm must be correct, efficient, and complex enough to allow for a wide 

range of difficulties. 

 

Assumptions 

 Variations of Sudoku, like Samurai Sudoku, have also intrigued avid players.  For this 

problem we assume the difficulty metrics will not require extensibility to any variations 

of Sudoku. 

 We assume a puzzle solver does not know the board generation method since a simple 

generation of repeated permutations can easily be deduced if it were an initial search 

parameter in the solver. 

 We assume the random number generation within an algorithm is actually random. 

 We assume the probability of consecutively generating identical boards is essentially 

zero. 

 

Algorithm A 

Board Generation 

 Using a random seed matrix for block 1, we apply elementary row and column operations 

to create eight other distinct matrices to fill the remaining blocks (Appendix A).  The order in 

which the permuted matrices are placed guarantees uniqueness.  Consider a Sudoku puzzle 

composed of 9 blocks, U , where 1B is the seed matrix and 92 ,..., BB  are the permutations of 1B .  

For example;  

 

987

654

321

BBB

BBB

BBB

U  

 

13

001

100

010

BB , 

001

100

010

14 BB , and 

010

001

100

001

100

010

19 BB . 
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Randomization 

 The randomization procedure arbitrarily applies a set of operations—pillar, ribbon, row, 

and column permutations—to the assembled board.  The frequency at which each operation 

occurs is randomly set within the algorithm. 

 

Entry Elimination 

 Under the constraint that at least a specified number of givens, in this case 54, must 

remain on the board, the locations of elements are randomly selected, along with the location of 

their rotationally symmetric partner, for removal.  Thus, if ija  is the element selected for 

removal, then )10)(10( jia  is also removed.  After each pair elimination, the algorithm executes a 

solver.  If the entries removed have left the puzzle unsolvable under the scope of the solver, the 

entries are reinserted and a new pair is selected.  If the solution found is not equivalent to the 

original board, implying multiple solutions exist, then this is a violation of our initial requirement 

for a unique solution and the entries are reinserted.  This process continues until the number of 

givens is less than or equal to the specified amount. 

 

The Solver and Difficulty Indexing 

 For algorithm A, the solver consists of the most elementary deduction processes 

commonly employed and suggested by training guides and players
 [3]

.  Naked-single candidate 

elimination examines the row and column of an unknown entry, if it can be deduced that only 

one possible value exists, that value is entered.  Hidden-single candidate elimination examines 

the rows and columns passing through the block containing an unknown entry; if a value exists 

that is present in each row and each column outside of the block, that value is inserted.  Here, 

they are treated as one process for the difficulty calculations.  This is because they are the only 

logic methods that will evoke a single candidate for insertion—all other methods tirelessly 

deduce the number of possible candidates, until a single elimination procedure finds the one 

possible value.  The lowest number of givens required to solve a puzzle generated by this 

algorithm observed thus far, using these processes alone, is 29. 

The metric that is evaluated after each entry elimination cycle is of the form 

 
p

k

kmD
1

, for 
!

1

pI p

p , and if 0xI  we let 1x .   

 

The metric is a function of p , the assigned critical rating for a deduction method, and pI , the 

number of iterations each method completes that successfully inserts a candidate entry.  If an 

algorithm were to use a method other than single candidate elimination, it will narrow the 

possible values affixed to that entry.  The assigned critical rating increases as deduction methods 

become more advanced and require more computing power.  This equation produces a range of 

difficulty from 20 D .  The following calculations examine the upper bound and lower bound 

of D  for algorithm A; 

 

If 27,54 pIm , and 1p , then 2
!127

1
54D . 
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If 52,29 pIm , and 1p , then 5576923.
!152

1
29D . 

 

This would be the case for the least and most difficult Sudoku puzzles generated by algorithm A, 

respectively.  We define 6.12 D , 2.16.1 D , 8.02.1 D , and 5576923.08.0 D  to 

be the ranges of very easy, easy, medium, and hard puzzles created, respectively.  Below are four 

examples of Sudoku puzzles with different difficulty levels. 

 

Very Easy - User specified 2D   Actual 893.1D  

3 6 7 2

7 5 4 2 1 3 6

1 3 8 6 7 5 9

6 3 5 9 7 1

5 2 1 4 3

1 8 6 3 5 9

6 3 8 9 7 5 1

9 5 1 4 2 3 8

4 8 9 5  
 

Easy - User specified 4.1D   Actual 382.1D  

8 5 2 3 9

1 7 3 6 9 5 4

6 9 5 4 7

4 1 7 2 3

2 9 5

6 5 4 8 7

4 7 2 9 3

7 2 9 3 6 4 8

9 6 5 2 1  
 

Medium - User specified 1.1D   Actual 025.1D  

4 9 1 7

6 1 5 9

8 2 9 3 1

2 9 6 1 3 8

5 8 7

8 2 9 4 1 3

9 2 1 3 8

1 7 9 4

5 9 1 6  
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Hard - User specified 8.0D   Actual 761.0D  
3 9 6 7 2

5 7 3 4

1 2 4

4 5 7

5 7 2 1 3

1 3 6

6 2 7

6 5 1 3

2 1 4 8 5
 

 

 

Strengths 

By definition, our logical elimination scheme produces a puzzle with exactly one 

solution.  The algorithm can produce a significantly large subset of all possible Sudoku boards. 

 

Limitations 

The scope of difficulty levels produced by this algorithm is very constricted.  Puzzles of 

the hardest difficulty level are in fact not any more difficult compared to an easy level puzzle for 

the average Sudoku player.   

 

Algorithm B – The Improved Algorithm A 

Board Generation 

 Boards in algorithm B are generated in the same fashion as A. 

 

Randomization 

 Randomization operations in A are used again.  Additionally, we implement the 

operations of minor row and minor column permutation and board transposition.  Operations are 

applied a random number of times. 

 

Entry Elimination 

 Entry elimination follows the same method as the simple model.  Rotationally symmetric 

entries are again removed.  The solver is applied to the resultant puzzle to ensure that it is 

solvable and the solution matches the original board.  The maximum number of givens remains 

the same. 

 

The Solver and Difficulty Indexing 

  Our solver is modified to include a second method of logical deduction, which considers 

the possibilities for each entry.  We use the same difficulty metric as in A, but our formula will 

now contain a second critical rating and iteration count for the additional deduction method.  

Thus, we notice an increase in the range of difficulties offered, 26323.0 D .  Therefore, the 

difficulty ranges for very easy, easy, medium, and hard become 6.12 D , 2.16.1 D , 

8.02.1 D , and 6323.08.0 D , respectively. 
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Strengths 

 The elimination procedure uses more than one deduction method.  As a result, the range 

of difficulties is extended and harder Sudokus can be created. 

 

Limitations 

 The average puzzle generation time for this algorithm increases.  The algorithm accounts 

for just two deduction methods.  This algorithm still produces boards of permuted seed 

matrices—this is a small fraction of all possible boards enumerated under a uniqueness 

constraint. 

 

Algorithm Complexity 

The following time complexities for both algorithms are based on our defined difficulty 

metric. 

 

Algorithm A – 
n

O
1

 

Algorithm B – 
!

1

n
O  

 

Conclusion 

 The algorithms provide a large number of randomly generated, unique puzzles where a 

user can specify one of four difficulties that we offer.  The algorithms are capable of making a 

significantly large subset of all possible Sudokus.  We can extend algorithm B to further analyze 

any completed Sudoku boards.  Given the logical processes needed to solve a particular Sudoku, 

we can compute a Difficulty Index.  Including more logical methods, such as X-Wing, Nishio, 

Stochastic, and other optimization algorithms, one would be able to generate puzzles of much 

greater difficulty since our algorithm is based on the number of iterations per deduction method. 
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Appendix A 

This is some seed matrix with entries represented by some nA , nB , or nC . 

 

A1 B1 C1

A2 B2 C2

A3 B3 C3  
 

If the Sudoku board is generated by the elementary permutations of this seed matrix, we have; 

 

A1 B1 C1 A2 B2 C2 A3 B3 C3

A2 B2 C2 A3 B3 C3 A1 B1 C1

A3 B3 C3 A1 B1 C1 A2 B2 C2

B1 C1 A1 B2 C2 A2 B3 C3 A3

B2 C2 A2 B3 C3 A3 B1 C1 A1

B3 C3 A3 B1 C1 A1 B2 C2 A2

C1 A1 B1 C2 A2 B2 C3 A3 B3

C2 A2 B2 C3 A3 B3 C1 A1 B1

C3 A3 B3 C1 A1 B1 C2 A2 B2  


